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Kinematics of nominally periodic surf zone waves have been measured in the
laboratory using LDA (laser Doppler anemometry), above trough level as well as
below, for weakly plunging breakers transforming into bores in shallower water. The
aim was to determine, through phase- or ensemble-averaging, periodic flow structures
in a two-dimensional vertical plane, from large-scale down to small-scale vortical
structures. Coherent multiple vortical structures were evident at the initiation of
breaking, becoming elongated along the surface during bore propagation. The initial
region is likely to become more extensive as waves become more strongly plunging
and could explain the difference in turbulence characteristics between plunging
and spilling breakers observed elsewhere. Comparison of vorticity magnitudes with
hydraulic-jump measurements showed some similarities during the initial stages of
breaking, but these quickly grew less as breaking progressed into shallower water.
Period-averaged kinematics and vorticity were also obtained showing shoreward
mass transport above trough level and undertow below, with a thick layer of
vorticity at trough level and a thin layer of vorticity of opposite rotation at the
bed. There were also concentrated regions of mean vorticity near the end of the
plunging region. Residual turbulence of relatively high frequency was presented as
Reynolds stresses, showing marked anisotrophy. Dynamic pressure (pressure minus
its hydrostatic component) was determined from the kinematics. The magnitudes
of different effects were evaluated through the depth-integrated Reynolds-averaged
Navier–Stokes (RANS) equations, which may be reduced to nine terms (the standard
inviscid terms of the shallow-water equations conserving mass and momentum with
hydrostatic pressure, and six additional terms), assuming that the complex, often
aerated, free surface is treated as a simple interface. All terms were evaluated,
assuming that a space/time transformation was justified with a slowly varying phase
speed, and the net balance was always small in relation to the maxima of the larger
terms. Terms due to dynamic pressure and vertical dispersion (due to the vertical
variation of velocity) were as significant as the three terms in the inviscid shallow-
water equations; terms involving residual turbulence were insignificant. The r.m.s.
(root mean square) variation of each along the slope is highly irregular, with the
inertia term due to (Eulerian) acceleration always greatest. This is consistent with
complex, though repetitive, coherent structures. Modelling the flow with the shallow-
water equations, using the surface elevation variation at the break point as input,
nevertheless gave a good prediction of the wave height variation up the slope.
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1. Introduction
The hydrodynamics of breaking waves in the surf zone has been the subject

of considerable research owing to the complexity of the physical processes and
their importance in determining cross-shore and alongshore sediment transport, the
resulting beach profiles, and overtopping and flooding of dunes and sea defences.
Measurements of water surface elevation giving wave heights, set-down and set-up
have been made for many situations, including plane slopes and bars (e.g. see Madsen,
Sorensen & Schäffer 1997). Comparison with hydraulic jumps is quite natural as the
one-dimensional inviscid problem is identical to that of a bore in the frame of
reference moving with the bore. Peregrine & Svendsen (1978) observe that vorticity is
generated at the toe of the roller which is initially similar to a mixing layer. Yeh &
Mok (1990) compared the hydraulic jump with an isolated bore and found differences
due to different shear layers at the bed resulting from different boundary conditions.
They also observed, for low Froude numbers of interest here (less than about 2),
coherent structures generated at the toe of the roller with an apparently different
nature from those of mixing layers. Detailed measurements of the kinematics and
turbulence in hydraulic jumps with detailed analysis have been made by Svendsen et al.
(2000). Nadaoka, Hino & Koyano (1989) measured turbulence structures under
periodic spilling breakers propagating over a horizontal bed, using laser Doppler
anemometry (LDA). They showed the existence of multiple horizontal vortices
(coherent vortical structures), shoreward of a crest, and intense obliquely descending
vortices, seaward of a crest. The latter are inclined vortices in a vertical plane which
have been identified as occurring intermittently for a small proportion of the time,
about 2 %, while making a significant contribution to average turbulence intensity,
about 20 %, in spilling breakers (Cox & Kobayashi 2000). In plunging breakers
these proportions are about 7 % and 40 %, respectively (Cox & Anderson 2001).
The formation mechanism remains elusive. Ting & Kirby (1994, 1995, 1996) have
made turbulence measurements in the surf zone, below trough level, under plunging
and spilling breaking waves. They could only measure the horizontal and vertical
components of velocity independently and paid particular attention to the transport
of turbulent kinetic energy, which was transported landward under plunging breakers
with dissipation within one wave cycle and was transported seaward under spilling
breakers with much slower dissipation. Cowen et al. (2003) have measured turbulence,
including Reynolds stresses, in the swash zone using PIV (particle image velocimetry)
and showed that the swash flows forced by plunging and spilling breakers are similar.
In addition to complex kinematics and turbulence, breaking waves also entrain air,
generating a two-phase flow (three-phase if sediment is entrained), which is scale and
salinity dependent. Finally, the surf zone in reality results from offshore waves, which
are random to some degree.

The practical importance of these flows has encouraged numerical modelling.
The most general approach is probably through the solution of the Navier–Stokes
equations in VOF (volume of fluid) form to accommodate the free surface: in a two-
dimensional vertical plane using sophisticated turbulence modelling, e.g. Lin & Liu
(1998), or in three-dimensional using LES (large eddy simulation), e.g. Christiansen &
Deigaard (2001) who qualitatively reproduce the inclined vortices mentioned above.
Such general approaches are particularly valuable for predicting interaction with steep
coastal structures, but are prohibitively computationally demanding for large-scale
three-dimensional problems, and are likely to remain so for the foreseeable future
even with the present rate of increase of computer power.
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Numerical methods with a much longer history are based on the depth-averaged
shallow-water equations, derived from the Navier–Stokes equations assuming hydro-
static pressure. The lack of frequency dispersion causes any initially smooth wave
profile to steepen as it propagates, to form a shock or bore. While this is clearly not
representative of an irrotational wave, it has been used to represent spilling breakers
in the surf and swash zones with some success. Early work relied on resolving the flow
parallel to the slope (Hibberd & Peregrine 1979) while later methods have successfully
applied methods developed for compressible aerodynamics, particularly Riemann
solvers as described in Toro (2001), also Dodd (1998) for practical applications.
These methods essentially conserve mass and momentum and represent the bore as a
sharp interface without spurious oscillations. The shallow-water equations have been
extended to approximate dispersive, irrotational waves through additional terms as
the Boussinesq equations, originally for shallow-water waves (Peregrine 1967). Since
then there has been considerable effort in extending these equations to be valid for
intermediate- and now deep-water waves, e.g. Madsen, Bingham & Liu (2002). These
methods are highly efficient as one-dimensional solutions and are suited for practical
computations in two-dimensions on modern PCs. Various breaker models have been
suggested to close the solution from initial breaking to bore formation in shallower
water. Models of the roller type, assuming a volume of water moving at the wave
speed with a geometry based on hydraulic jump knowledge, have been used by
Schäffer, Madsen & Deigaard (1993) and Madsen et al. (1997). Another model (Zelt
1991) assumes that the breaker may be represented as a diffusion term with various
empirical criteria, conserving momentum while dissipating energy. This was applied
to solitary waves and has been developed for periodic waves by Kennedy et al. (2000)
with further empirical modification. A model involving the solution of the vorticity
equation has been suggested by Veeramony & Svendsen (2000), using the hydraulic
jump results of Svendsen et al. (2000). All models require some empirical definition for
the onset of breaking. Wave height and set-up have been compared with experiment,
and predictions by the Boussinesq equations with breaker models are somewhat
mixed, being generally poor around the initiation of breaking and requiring different
empirical ‘constants’ for different situations. An original intention of the present work
was to evaluate the terms in the depth-integrated Reynolds-averaged Navier–Stokes
(RANS) equations through physical experiment to inform the modelling of rollers
within the nonlinear shallow-water equations or the Boussinesq equations.

The underlying physical processes associated with breaking waves in the surf zone
are thus highly complex. In this study, LDA measurements are made with nominally
regular periodic waves in a small laboratory wave flume in order to determine
repetitive coherent structures in a vertical plane. LDA measures velocity at a point
but the regular wave motion will enable the phase-averaged spatial picture to be ap-
proximated, with coherent structures averaged over many cycles. Phase- or ensemble-
averaged (and period-averaged) kinematics may thus be obtained and dynamic
pressures derived, importantly above trough level. Because the larger-scale structures
are not perfectly repetitive, the moving-average method of Nadaoka et al. (1989) is
used. The kinematics are thus split into: those due to periodic components due to wave
motion (including high-order components and reflections) combined with repetitive
coherent vortical structures; and those due to residual random or turbulent com-
ponents. These components are interpreted further through their individual spectra
and it will not be possible here to separate ensemble-averaged irrotational wave
components from those due to coherent vortical structures. A method for separating
out wave components from turbulence (possibly including coherent structures) has
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been devised by Trowbridge & Elgar (2001), using two probes separated by a distance
much less than the wavelength and greater than the turbulence length scale. This
is particularly useful in the field where waves are not artificially periodic and the
orientation of a probe and the wave principal axes is not always precise. Such a
method could also be useful in the laboratory to separate wave motion from coherent
structures, and possibly coherent structures from random turbulence, provided the
length scales are sufficiently different, requiring a second LDA.

It is valuable to know the relative instantaneous magnitudes of the different terms
in the RANS equations to provide physical insight and inform modelling, but they
are difficult to visualize and interpret in a two-dimensional vertical plane. This is
simpler through the depth-integrated terms of the RANS equations (although this
will be seen to be complicated enough), and these terms are derived and evaluated
from the kinematics data. The air/water interface is in reality a turbulent aerated two-
phase flow, as analysed in Brocchini & Peregrine (2001), which is beyond the scope
of the present measurements. In determining these terms, a discontinuous air/water
interface is assumed, as in irrotational waves, which will be justified a posteriori if
the terms in the equations balance. These terms naturally relate to the terms in the
depth-averaged shallow-water equations, which are solved here, following the method
of Stansby (2003) for solitary waves. This has also recently been applied to the over-
topping of a sloping sea wall (Stansby & Feng 2004), giving reasonable predictions.

Such experimental measurements and analysis are very time consuming and only
one case is presented. While it is known that the characteristics of breaking waves
are highly dependent on their defining parameters, e.g. the surf similarity parameter,
the results will provide a general qualitative assessment of coherent flow structures
and the different flow properties. Their quantitative evaluation for one case will also
be useful for assessing more complete flow models, of the kind mentioned above.

2. Experiment and data analysis
The intention was to generate substantial breaking waves in a laboratory flume and

measure detailed kinematics using LDA. A relatively compact region enclosed in a box
is desirable to satisfy safety requirements. Temporal point velocity measurements were
thus made and regular waves of slowly varying form (on a small slope) enable temporal
variations to be approximately transformed to spatial through ∂/∂t = −c∂/∂x, where
t is time, x is the horizontal coordinate and c is the local slowly-varying wave
speed which may be obtained from surface-elevation measurements. This strictly
requires waves of permanent form and its use may only be justified from analysis of
experimental data. An inclined beach of slope 1:20 was set up in a wave flume which
was 11 m long, 0.3 m wide and 0.45 m deep. The sidewalls and the beach plate were
made of Perspex to enable the use of LDA. The toe of the beach was 1.9 m from the
piston wavemaker with an almost sinusoidal motion. A sketch is shown in figure 1.
Regular waves with period of 2.42 s were generated in a water depth of 0.34 m at the
wavemaker producing a wave height of 0.105 m at the toe of the beach. The waves
broke initially at about 4.95 m from the wave paddle with an observed variation
of ±0.02 m and the ratio of wave height to still water depth was about 0.90. The
variations of wave height and mean surface elevation with distance from the paddle
are shown in figure 2. These conditions correspond to a surf similarity parameter
S/

√
Hb/L0 = 0.36, where S is the beach slope and Hb and L0 are the wave height

at breaking and the deep-water wavelength. This value is close to the boundary of
0.4 between spilling and plunging breakers (Battjes 1974) although the breakers here
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Figure 1. Sketch of wave flume geometry and measurement positions.
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Figure 2. Variation of �, wave height and +, mean elevation (m), with distance x (m),
from the wavemaker.

appear visually to be weakly plunging. The set-up above the initial break point was
about 10 % of the wave height there and is typical of results of experiments presented
in Madsen et al. (1997).

Vertical LDA traverses measuring horizontal and vertical components of velocity
simultaneously were made at 12 longitudinal locations at a distance x from the
wavemaker (at mid position), together with surface elevation measurement. The
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x (m) 5.540 5.737 5.887 5.962 6.037 6.112 6.187 6.262 6.337 6.412 6.796 7.200
c (m s)−1 1.33 1.44 1.45 1.43 1.41 1.38 1.35 1.32 1.29 1.27 1.22 1.13
c/

√
gd 1.06 1.19 1.23 1.23 1.24 1.23 1.21 1.21 1.20 1.20 1.26 1.32

Table 1. Values of x, c and c/
√

gd at 12 locations.

distance x and the wave speed c measured at these locations are given in table 1,
together with the ratio c/

√
gd , where d is the still water depth and g is the acceleration

due to gravity. These locations cover weakly plunging breakers in the outer surf zone
to bores propagating in the inner surf zone and detailed results for x = 5.540 m and
5.737 m (plunging) and for x = 6.796 m and 7.200 m (bores) are presented first. The
values of c/

√
gd are quite close to those found by Stive (1984) for spilling breakers.

The laser beams were focused at a point 30 mm (1/10th of the width of the flume)
from the sidewall, giving a signal blockage (dropout) due to air bubbles of less than
15 % which was considered acceptable. The blockage naturally becomes greater as
this distance is increased. Integral turbulence length scales have been estimated to
vary from 0.04 to 0.18 of the water depth from the outer to the inner surf zone (Cox,
Kobayashi & Okayasu 1994) and 30 mm is somewhat greater than this. Turbulence
at this distance from the wall is thus not expected to be inhibited significantly by the
presence of the wall. The lowest vertical measurement position was 10 mm from the
bed and the highest 2.2 mm beneath a wave crest. In addition, surface elevation was
measured independently at values of x shown below:

x(m) 1.094 2.404 3.404 3.904 4.404 4.904 5.304 5.598 6.104 6.604 7.104 7.604

The off-axis type LDA system (TSI product) consists of the following elements: a
4W argon-ion laser source, a traverse table, ColourLink with signal processor (FA650
auto-correlator), DataLink and the multi-channel A/D converter. By running the
Windows version FIND programme (FFW14), velocity and surface elevation can be
measured simultaneously in a controlled manner with a coincident sampling rate of
300–400 Hz. For each location, 375 wave cycles were measured to ensure sufficient
data have been obtained for turbulence analysis, following Nezu & Nakagawa (1993).

Conventional phase-averaging is limited in this context as each cycle of surface
elevation and velocity is not exactly repetitive owing to fluctuations at the order of
the wave frequency (and possibly higher) about the overall mean periodic variation,
which are in addition to relatively small-scale high-frequency effects due to coherent
structures and turbulence which are of interest here. In order to reduce contamination
by these lower-frequency effects, the moving-average method was used by Nadaoka
et al. (1989), where each cycle is divided into segments or blocks of time and the
average velocity (and surface elevation) for each block is obtained. The average
for each corresponding block over all cycles is then taken to give the overall mean
cyclic variation; this will be referred to as ensemble-averaging to distinguish it from
direct phase-averaging. Random residual turbulent properties are also obtained by
subtracting the ‘raw’ velocity variation from the average for each block in each cycle,
before averaging the resulting quantities over all cycles to give the overall mean cyclic
variation. The decision on the number of blocks is determined by what one wants to
measure. The large-scale ensemble-averaged motions and repetitive coherent vortical
structures are the main emphasis of this study. The number of blocks should thus be
large enough to define these structures. It was found that there was little difference in
ensemble-averaged results with 120 blocks (6 samples/block at sample rate of 300 Hz)
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or 240 blocks, but differences were noticeable with 60 blocks. 120 blocks thus appear
to resolve the coherent structures with residual superimposed random turbulence
above the Nyquist frequency of 60 × wave frequency. Further interpretation may be
obtained from the velocity spectra, some examples of which are shown in figure 3 for
x = 5.54 m and 7.2 m, before application of the moving-average method. Gradients
of approximately −5/3 (on the log/log scale), typical of isotropic (inertia-range)
turbulence, and −3, typical of two-dimensional frozen turbulence (e.g. Lesieur 1990),
are seen on the graphs. The gradients of −5/3, occur sometimes down to a frequency
of 1 Hz. A background gradient close to −3 only appears to occur with x =5.54 m
at mid depth (also near the bed, not shown) where there are marked harmonics at
frequencies between about 2 and 7 Hz. This does not occur at still water level or at
x = 7.2m at any depth. The Nyquist filter frequency is about 25 Hz and it is clear
that random turbulence below this frequency is lost in the moving-average process.
The turbulence quantities thus obtained will only be superimposed residual values of
relatively high frequency, and not representative of all turbulence energy. In spite of
the approximately −5/3 gradients, it will be seen from the Reynolds stresses below
that this residual turbulence is far from isotropic.

Plots of ensemble-averaged velocity vectors are shown in figure 4 for weakly
plunging breakers and propagating bores. Note that the plots are against T − t (not t),
where t is time and T is wave period, which is (approximately) proportional to the
horizontal coordinate. The velocity magnitudes in the roller (away from the immediate
vicinity of the toe) are similar to the phase speed, with maxima up to 20 % higher
initially and up to 20 % lower in the bores. Higher values with initial plunging are to
be expected as crests overturn and lower values in bores are presumably due to the
diffuse nature of the rollers, discussed further below. The maximum horizontal velocity
occurs just above the toe initially, with magnitudes relative to the horizontal velocity
at the crest of 1.21 and 1.54 at x = 5.54 m and 5.737 m, respectively. These are similar
to values obtained by Qiao & Duncan (2001) for the initial stages of gentle spilling
breakers. As a check on experimental accuracy, the horizontal volume flux over one
period

∫ T

0

∫ η̃

zb
ũ dz dt , which should be zero, was evaluated for each location and

normalized by
∫ T

0

∫ η̃

zb
|ũ| dz dt . In these formulae, and for vorticity below, x and z are

horizontal and vertical coordinates, u and w are horizontal and vertical velocities,
and the tilde denotes ensemble-averaged; η and zb are the surface and bed elevation,
respectively. Values of this flux ratio were less than 5 %, indicating an acceptable level
of accuracy. Corresponding vorticity contours are shown in figure 5, where vorticity
ω̃ = ∂ũ/∂z − ∂w̃/∂x. Concentrated vorticity is apparent in the roller region as multiple
structures after the initiation of breaking and is spread along the free surface for bores;
these are repetitive showing periodic coherent structures, bearing in mind that the
results are the average of 375 cycles. The vorticity generation is shown at x =5.54 m
and 5.737 m, where multiple coherent vortices originate, and their further evolution is
shown at x = 5.887 m, 5.962 m, 6.037 m and 6.187 m. The vortices are all clockwise, as
sketched by Nadaoka et al. (1989) for spilling breakers, and spread seaward relative
to the crest before inclining towards the bed at x = 6.037 m and forming a single large
coherent region at x = 6.187 m. This may be considered to be the end of the plunging
region and the start of bore propagation eventually resulting in the structures shown
at x = 6.796 m and 7.2 m, with vorticity distributed along the surface. For the initial
breakers at x = 5.54 m and 5.737 m, the maximum vorticity is about 65 s−1 at the toe
of the breaker. This quickly reduces to about 35 s−1 for x =5.887 m to 6.178 m which
is maintained for bores at x = 6.796 and 7.2 m, where there is vorticity upstream of
the breaker from the passage of previous breakers, as well as downstream. The drop
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Figure 3. Horizontal and vertical velocity spectra (right-hand and left-hand, respectively) for
initial breaking at (a) x = 5.54m and (b) 7.2m: (i) at mid depth and (ii) still surface level.
The full line shows the −5/3 gradient and the dashed line the −3 gradient. The Nyquist filter
frequency resulting from ensemble averaging is 25Hz.



Kinematics and depth-integrated terms in surf zone waves 287

1.05 1.15 1.25 1.35 1.45 1.55 1.65
0

0.1

0.2

0.3(a)
z 

– 
z 0

 (
m

)

(b)

z 
– 

z 0
 (

m
)

(c)

z 
– 

z 0
 (

m
)

(d)

z 
– 

z 0
 (

m
)

1.05 1.15 1.25 1.35 1.45 1.55 1.65
0

0.1

0.2

0.3

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.1

0.2

0.3

T – t (s)

Figure 4. Velocity vector plots for initial breaking at (a) x =5.54 and (b) 5.737m
and bores at (c) x = 6.796 and (d) 7.2 m.

in maximum vorticity appears to occur where the coherent vortices spread markedly
along the surface. The maximum vorticity near the toe of gentle spilling breakers
was measured by Qiao & Duncan (2001) just after breaking when they found values
of |ω|maxls/c of 0.2–0.9, where ls is the surface tension length scale of about 2.7 mm.
This compares with a value of 0.125 for the initial stages here, suggesting that this is
not the relevant length scale for these breakers which appear weakly plunging. The
maximum vorticity and other values for x =5.54, 5.737, 6.796 and 7.2 m are tabulated
in table 2.
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Period-averaged velocity vectors and vorticity are shown in figure 6. The onshore
velocity above trough level and the undertow below are clearly visible across the surf
zone. An upwards velocity region around x = 6.2 m is also visible (although note the
distorted scale) and this appears to be the end of the region with the formation of
multiple coherent vortices (shown in figure 5). The period-averaged vorticity field
is as expected with a thick layer of clockwise vorticity around the trough line and
counterclockwise vorticity near the bed. It is perhaps surprising that the end of
the initial region, as described above, is marked by regions of concentrated mean
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Figure 5. Vorticity, ω̃, (s−1) contour plots for initial breaking at (a) x = 5.54, (b) 5.737,
(c) 5.887, (d) 5.962, (e) 6.037 and (f ) 6.187m and bores at (g) x = 6.796 and (h) 7.200m.
Clockwise rotation is positive.

clockwise vorticity. It is also interesting to see the velocity vector field averaged over
the ‘wet’ period (the time for which a point is immersed in a cycle) and normalized
by the wave speed, as measured at a given location. This is shown in figure 7 and
reflects the comments made about figure 4. The maximum values occur at the crest.
During the initiation of breaking, maximum values are just greater than unity and
in the bore region just less than unity. Magnitudes decrease to small values at and
below trough level, as the wet period becomes equal to the wave period.
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Figure 6. Period-averaged (a) velocity vectors and (b) vorticity. The full lines show
the crest and trough trajectories.

Ensemble-averaged dynamic pressure, p̃D , (pressure minus its hydrostatic com-
ponent) contours are shown in figure 8. The way in which dynamic pressure is
calculated from kinematics is defined in § 4. For the initial weakly plunging breakers,
very low dynamic pressures are created in the roller region with minimum values
of p̃D/ρg H of –0.4, where ρ is water density and H is wave height, at x = 5.54m
reducing to –0.21 at x =6.112 m. For x > 6.187m, after the end of the initial region,
negative dynamic pressures have reduced markedly, being negligible by x =6.337 m
(not shown). Dynamic pressure at the surface is of course zero, and is negative
at the bed shoreward of the breaker and positive seaward with similar maximum
magnitudes. The maximum magnitude of p̃D/ρg H is approximately 0.2 at x = 5.54 m
and 0.13 at x = 7.2 m. Dynamic pressure magnitudes are thus greater during initial
breaking than in bores but remain significant for bores, as will also be shown below
for depth-integrated quantities.
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Figure 7. Wet period-averaged velocity vectors normalized by measured local wave celerity.
The full lines show the crest and trough trajectories.

Contours of horizontal normal stress due to residual turbulence, −ρũ′2, are shown
in figure 9, of vertical normal stress, −ρw̃′2, in figure 10 and shear stress, −ρũ′w′, in
figure 11. The dash denotes residual turbulent component, resulting from the moving-
average method with 120 blocks. Note that negative normal stress quantities are
actually plotted, i.e. positive quantities, and water density ρ = 1000 kgm−3. It can be

seen that ũ′2 is greatest close to the crest at all positions. The contours are elliptical
initially, at x = 5.54m and 5.74 m, and elongated under bores, at x = 6.80 m and 7.20 m.
Magnitudes initially, with maxima of 0.055 m2 s−2 and 0.045 m2 s−2 for x = 5.54 m and
5.74 m, respectively, are greater than under bores, with maxima of 0.035 m2 s−2 for

x = 6.976 m and 7.2 m, respectively. On the other hand, w̃′2 is greatest at the toe
of the roller initially and for bores. Although the contour patterns are again fairly
elliptical initially and elongated for bores, they have a different orientation from
the ũ′2 contours, relative to the wave, emphasizing the anisotropy of the turbulence.
The magnitudes are less than for horizontal stress, with maxima of 0.040 m2 s−2 and
0.030 m2 s−2 for x =5.54 m and 5.74 m, respectively. There are very small maxima of

0.005 m2 s−2 for bores at x = 6.80 m and 7.20 m. The term −ũ′w′ in figure 11 is clearly
greatest at the toe of the roller initially with maxima of 0.015 m2 s−2, which is markedly
less than the normal stress magnitudes. This is also the case for bores with much
smaller magnitudes and maxima of about 0.002 m2 s−2, with very small background
magnitudes persisting over much of the flow region.

3. Comparison with hydraulic jumps
Some of the above results are collated in table 2 for comparison with hydraulic

jump results. The upstream and downstream depths of the hydraulic jump, h1 and
h2, are assumed to be equivalent to the minimum and maximum depths as the
breaker passes and the upstream velocity, u1, is equivalent to the sum of the wave
celerity and the corresponding depth-averaged velocity which is the minimum value.
Examples of variation of depth and depth-averaged velocity with time are shown in
§ 5. Svendsen et al. (2000) measured vorticity in hydraulic jumps with Froude number,
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Figure 8. Dynamic pressure ((p̃D/ρ) × 100), (m2 s−2), contour plots for initial breaking at
(a) x = 5.54 and (b) 5.737m and bores at (c) x = 6.796 and (d) 7.200m.

Fr = u1/
√

g h1, in the range 1.38 to 1.56, finding that the non-dimensional vorticity
ωh2ξ/u1 along the base of the roller collapsed the data for the range of conditions
rather well. The maximum at the toe of the roller has an extrapolated value of about
17 (Veeramony & Svendsen 2000) and may be compared with the maximum value
at the toe of the breakers in these experiments. Table 2 shows that the equivalent
Froude numbers are slightly higher, ranging from 1.46 to 1.76, and that the maximum
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Figure 9. Horizontal residual turbulent normal stress (ρũ′2), (Nm−2), contour plots for
initial breaking at (a) x =5.54 and (b) 5.737m and bores at (c) x = 6.796 and (d) 7.200 m.

non-dimensional vorticity ranges from 22.1 at the initiation of breaking to 4.5 in the
bore region. A value for an albeit weakly plunging breaker somewhat larger than
the hydraulic jump value is perhaps to be expected as the transitory overturning
wave generates a jet which impacts below with relatively greater velocities than in
the continuous mixing-layer behaviour of a hydraulic jump. The marked reduction
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Figure 10. Vertical residual turbulent normal stress (ρw̃′2), (Nm−2), contour plots for initial
breaking at (a) x = 5.54 and (b) 5.737m and bores at (c) x = 6.796 and (d) 7.200m.

for the bore behaviour which follows is probably due to mixing and dissipation
by turbulence resulting from continuous breaking in the surf zone; equivalent
turbulence is not present in a hydraulic jump which is essentially a single stationary
event.

The maxima of ũ′2/u2
1 are 0.02, 0.015, 0.17 and 0.016 at x = 5.54 m, 5.74 m, 6.80 m

and 7.20 m, respectively, comparing with maximum hydraulic jump values of 0.06
from Svendsen et al. (2000) and 0.05 from Liu, Rajaratnam & Zhu (2004). Note that
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Figure 11. Residual turbulent shear stress (−ρũ′w′), (Nm−2), contour plots for initial
breaking at (a) x = 5.54 and (b) 5.737m and bores at (c) x = 6.796 and (d) 7.200m.

Froude numbers for Liu et al. (2004) were in the ranges 2.0–3.3. There are smaller
maxima of w̃′2/u2

1 of about 0.015 and 0.01 at x = 5.54 m and 5.74 m, and 0.002 at
x = 6.8m and 7.2 m. These compare with hydraulic jump values of 0.06 from Svendsen
et al. (2000) and 0.006 from Liu et al. (2004). The maxima of −ũ′w′/u2

1 are 0.0085
and 0.005 at x = 5.54 m and 5.74 m and 0.001 at x = 6.8 m and 7.2 m, with very small
background magnitudes persisting over much of the flow region for the latter. For the

hydraulic jump experiments of Svendsen et al. (2000), the maximum −ũ′w′/u2
1 was

between 0.02 and 0.03, while for those of Liu et al. (2004) it was about 0.008.
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x (m) 5.54 5.74 6.80 7.20
c (m s−1) 1.33 1.44 1.22 1.13
u1(m s−1) 1.65 1.74 1.45 1.46
h1(m) 0.13 0.12 0.08 0.070
h2(m) 0.27 0.23 0.145 0.115
ξ = h2/h1 2.08 1.92 1.81 1.64
Fr = u1/

√
g h1 1.46 1.60 1.64 1.76

ωs(s
−1) at toe 65 65 35 35

ωs h2ξ/u1 22.1 16.5 6.35 4.5

ũ′2(m2 s−2) 0.055 0.045 0.035 0.035

ũ′2/u2
1 0.020 0.015 0.017 0.016

w̃′2(m2 s−2) 0.04 0.03 0.005 0.005

w̃′2/u2
1 0.015 0.010 0.002 0.002

−ũ′w′(m2 s−2) 0.015 0.015 0.002 0.002

−ũ′w′/u2
1 0.0085 0.005 0.001 0.001

Table 2. Surf zone vorticity and turbulence characteristics.

The turbulence stresses obtained for these experiments are generally markedly less
than for the hydraulic jump experiments and this is mainly due to the method of
analysis. In this study, residual ‘random’ turbulence is differentiated from coherent
structures and some turbulence is obscured in the moving-average process. In
hydraulic jumps, all unsteady motion, including coherent structures, is classed as
turbulence and the present analysis applied to hydraulic jumps would thus give smaller
values. However, there are also differences between the experiments of Svendsen et al.
(2000) and Liu et al. (2004), albeit for somewhat different Froude numbers, notably
for vertical normal stress and shear stress. There are further quite marked differences
from earlier authors quoted in Liu et al. (2004). There are also qualitative differences
in the distribution of stresses between these experiments and hydraulic jumps. The
maximum stresses in hydraulic jumps always occur at the toe of the roller and this

is the case here for w̃′2 and −ũ′w′, but not for ũ′2 where the maxima occur near the
crest. For these experiments ũ′2/u2

1 decreases slightly from the initiation of breaking

to bores while w̃′2/u2
1 and −ũ′w′/u2

1 decrease markedly.

4. RANS depth-integrated shallow-water equations
For this analysis, we assume that the flow is strictly periodic. In a two-dimensional

vertical (2DV) plane, horizontal and vertical velocities (u, w) at a point have phase-
averaged components (ũ, w̃) and turbulent components (u′, w′)

u = ũ + u′,

w = w̃ + w′.

}
(1)

Phase-averaging (taking the periodic mean) gives, for continuity,

∂ũ

∂x
+

∂w̃

∂z
= 0, (2)

and for horizontal momentum

∂ũ

∂t
+

∂(ũ2)

∂x
+

∂(ũw̃)

∂z
= − 1

ρ

∂p̃

∂x
− ∂(ũ′2)

∂x
− ∂(ũ′w′)

∂z
, (3)
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where pressure p = p̃ + p′. Simplistically assuming a single-phase flow, the kinematic
free-surface boundary condition for water surface elevation, η = η̃ + η′, is given by

ws =
∂η

∂t
+ us

∂η

∂x
,

w̃s + w′ =
∂(η̃ + η′)

∂t
+ (ũs + u′)

∂(η̃ + η′)

∂x
,


 (4)

where s denotes surface values and b, below, bed values. Phase-averaging gives

w̃s =
∂η̃

∂t
+ ũs

∂η̃

∂x
+ ũ′ ∂η′

∂x
. (5)

The last term is difficult to evaluate experimentally. It has also been stated above that
terms associated with the turbulent aerated two-phase flow at the air/water interface,
e.g. Brocchini & Peregrine (2001), are to be ignored. This is justified below, at least
in an instantaneous depth-integrated sense, where it is shown that depth-integrated
horizontal force/momentum flux terms balance closely. Such surface assumptions
have also been made in relation to depth-integrated force/momentum flux terms in
hydraulic jumps by Svendsen et al. (2000). Integrating over depth, from the bed to

the water surface,
∫ η̃

zb
. . .dz, for example ¯̃u h̃ =

∫ η̃

zb
ũ dz, where h is water depth and

the overbar indicates depth average, applying the Leibnitz theorem and the phase-
averaged kinematic free-surface (and bed) boundary condition, gives, for continuity,

∂η̃

∂t
+

∂(h̃¯̃u)

∂x
= 0, (6)

and for horizontal momentum with pressure defined by its hydrostatic and dynamic
components, p̃ = ρg(η̃ − z) + p̃D ,

∂

(∫ η̃

zb

ũ dz

)
∂t

+

∂

(∫ η̃

zb

ũ2 dz

)
∂x

= −gh̃
∂η̃

∂x
− 1

ρ

∫ η̃

zb

∂p̃D

∂x
dz − ũ′w′

s + ũ′w′
b −

∫ η̃

zb

∂ũ′2

∂x
dz.

(7)

Applying the Leibnitz theorem to the last term gives

−
∫ η̃

zb

∂ũ′2

∂x
dz = −

∂

(∫ η̃

zb

ũ′2 dz

)
∂x

+ ũ′2
s

∂η̃

∂x
− ũ′2

b

dzb

dx
. (8)

Putting ũ= ¯̃u+ (ũ − ¯̃u), assuming u′at the bed is zero, gives

∂(¯̃uh̃)

∂t
+

∂(¯̃u
2
h̃)

∂x
+ gh̃

∂η̃

∂x
= − 1

ρ

∫ η̃

zb

∂p̃D

∂x
dz −

∂

(∫ η

zb

(ũ − ¯̃u)2 dz

)
∂x

I II III IV V

− ũ′w′
s + ũ′w′

b −
∂

(∫ η̃

zb

ũ′2 dz

)
∂x

+ ũ′2
s

∂η̃

∂x
, (9)

VI VII VIII IX

where the roman numerals are used to indicate the different terms. Term I is the
inertia term due to (Eulerian) flow acceleration, II is the advection term and III is
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the hydrostatic pressure gradient term. The dynamic pressure gradient term IV has
yet to be derived. Term V is due to the vertical variation of velocity, called vertical
dispersion to distinguish it from frequency dispersion. The surface and bed shear
stress terms are VI and VII, respectively. The normal turbulent stress terms (VIII and
IX) are not usually included, but should be evaluated. In (6) and (9), terms in ∂/∂x

will be transformed to −(1/c)(∂/∂t) in order to be evaluated from the experimental
data. The justification of this transformation for slowly varying waves will be made
a posteriori by showing that the terms in (9), evaluated from experimental data,
balance relatively closely.

The dynamic pressure term may be determined from the RANS vertical momentum
equation

∂w̃

∂t
+

∂(ũw̃)

∂x
+

∂(w̃2)

∂z
= − 1

ρ

∂p̃D

∂z
− ∂(ũ′w′)

∂x
− ∂(w̃′2)

∂z
, (10)

giving

−
[
p̃D

ρ

]η̃

z

=

∫ η̃

z

∂w̃

∂t
dz +

∫ η̃

z

∂(ũw̃)

∂x
dz + [w̃2]sz +

∫ η̃

z

∂(ũ′w′)

∂x
dz + [w̃′2]sz. (11)

If the surface pressure is zero, applying the Leibnitz theorem and the kinematic free
surface boundary condition, gives

p̃D

ρ

∣∣∣∣
z

=
∂

∂t

∫ η̃

z

w̃ dz +
∂

∂x

∫ η̃

z

ũw̃ dz−w̃2|z +

∫ η̃

z

∂(ũ′w′)

∂x
dz + [w̃′2]sz. (12)

In hydraulic jumps, the influence of turbulence is considered negligible (Svendsen
et al. 2000) and is almost certainly less here, owing to the different definitions of
turbulence described above. At a point with vertical coordinate z

p̃D

ρ
=

∂

∂t

∫ η̃

z

w̃ dz +
∂

∂x

∫ η̃

z

ũw̃ dz−w̃2. (13)

Using the space–time transformation gives

p̃D

ρ
=

∂

∂t

∫ η̃

z

w̃ dz − 1

c

∂

∂t

∫ η̃

z

ũw̃ dz−w̃2. (15)

For the depth-averaged horizontal momentum (9), we require

− 1

ρ

∫ η̃

zb

∂p̃D

∂x
dz = − 1

ρ

∂

∂x

∫ η̃

zb

p̃D dz +
p̃Ds

ρ

∂η̃

∂x
− p̃Db

ρ

dzb

dx
. (16)

With p̃Ds =0 and the space–time transformation

− 1

ρ

∫ η̃

zb

∂p̃D

∂x
dz =

1

ρc

∂

∂t

∫ η̃

zb

p̃D dz − p̃Db

ρ

dzb

dx
. (17)

The nine terms in (9) have been evaluated from LDA measurements.

5. Depth-integrated experimental results
Although we are mainly concerned with the force/momentum equations (9), the

balance of the two ensemble-averaged terms in the depth-integrated continuity, (6)
is assessed first as an independent test of the space/time transformation and experi-
mental accuracy. Examples of the two terms and the remainder are shown in figure 12
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Figure 12. Terms in depth-integrated continuity (6) against time: ∂η̃/∂t , full line;
(−1/c)(∂(h̃¯̃u)/∂t), dashed line; remainder dotted. (a) at x = 5.54 m, (b) at 6.80m.

for the initial breaking region at x = 5.54 m and a bore at x =6.80 m. The remainder
term is small, but not negligible, with a maximum of about 15 % of the maximum
magnitude for the bore. The relative errors in the remainder term for the force/
momentum equation will be seen to be smaller and the greater errors in (6) could
be due to ∂η/∂t , as surface elevation is measured by a capacitance wave probe with
an uncertain error due to the variably aerated interface which will be exaggerated by
differentiation with respect to time.

The depth-integrated terms I, II, III, IV, V in (9) are plotted against time in
figures 13, 14, 15, 16 for x = 5.54, 5.74, 6.80 and 7.20 m, respectively. In each figure:
(a) gives the ensemble-average surface elevation η̃ and η̃ ± σ , where σ is the standard
deviation of the ensemble-average values (obtained for each cycle using the moving-
average method); (b) gives the ensemble-average, depth-averaged velocity ¯̃u and ¯̃u ± σ ;
(c) gives the ensemble-average variation of terms I, II and III from (9) and the overall
balance or remainder due to all terms, which is theoretically zero; and (d) gives
terms IV and V again with the overall balance. It is evident that σ for surface elevation
is generally greater than for depth-averaged velocity, supporting the comment about
measurement error above. It is also evident that terms I–V have some general
similarities, but quite different detailed structures, while the balance term is always
very small relative to the maxima, indicating the accuracy of the LDA measurements
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Figure 13. Variations of (a) surface elevation, (b) velocity (both with ± standard deviation σ
shown as dashed lines) and (c) momentum terms, —, I; - - -, II; . . . , III, (d) —, IV; - - -, V and
overall balance with time for position x = 5.54m shown as a full line.

and their subsequent analysis, and also justifying the space–time transformation.
Terms VII, VIII and IX are very small and VI is larger, particularly in the initial
breaking region. To give a more direct indication of the relative magnitudes of the
terms I–V, the r.m.s. values for each position are calculated and plotted against x,
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Figure 14. As for figure 13, but for x =5.74 m.

the distance from the mid position of the wavemaker, in figure 17. It is shown that
term I, the inertia term, is always the largest and the small magnitude of the balance
term is clearly apparent. There is considerable variation with x for all terms and the
magnitudes of II (advection), III (hydrostatic pressure gradient) and IV (dynamic
pressure gradient) and V (vertical dispersion) are always significant, with II and IV
smaller for bores than initially. The variation of the terms reflects the rapidly changing
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Figure 15. As for figure 13, but for x = 6.80 m.

nature of the flow and its coherent structures. It should be pointed out that this is a
relatively short slope in that the distance from the initial break point to the beach is
slightly greater than one wavelength. However, similar complexity was observed by
Nadaoka et al. (1989) who observed spilling breakers over a horizontal bed region,
after a region of bed slope. In order to determine whether the r.m.s. values of ‘total’
advection, term II–term V, and ‘total’ pressure gradient, term III–term IV, show similar
variability, r.m.s. values are plotted in figure 18. The variability with x is certainly
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Figure 16. As for figure 13, but for x =7.20 m.

less but far from smooth. Finally, r.m.s. values of the Lagrangian acceleration term,∫ η̃

zb
Dũ/Dt dz, equal to the sum of terms I + II – V, are plotted against x in figure 19

with the total pressure gradient values. The difference is small, as would be expected.
The r.m.s. values of residual surface stress term VI is also included as the largest
other term; it is noticeable initially, but negligible for bores.

Period-averaged values determine set-up and energy dissipation. However, the
period-average of the acceleration term (I in (9)) and the advection terms (II and V),
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Figure 17. Variation of r.m.s. values of terms I (�), II (+), III (�), IV (×), V (�) in (9) and
overall balance (�), (m2 s−2), with distance x (m) from the wavemaker.
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Figure 18. Variation of r.m.s. values of terms I (�), II–V (+), III–IV (�), (m2 s−2), with
distance x (m) from the wavemaker.

after application of the space–time transformation, should be zero and all were of
order 1 % of the ensemble-averaged (instantaneous) maximum of the larger terms
for a given horizontal location. The period-average of the remainder/balance term
was usually about half this. The period-average of the hydrostatic pressure gradient
term (III), expected to be non-zero, was usually about 3–4 times higher and the
dynamic pressure gradient term (IV) was of similar magnitude. It is thus apparent
that the measured data is not sufficiently accurate to give accurate predictions of
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Figure 19. Variation of the r.m.s. Lagrangian acceleration term,
∫ η̃

zb
Dũ/Dt dz, I + II – V, (×);

r.m.s. ‘total’ pressure gradient term, III–IV, (+); and the r.m.s. of the surface stress term, VI,
(lower +), (m2 s−2) with distance x (m) from the wavemaker.

the small period-averaged quantities. However, given the small magnitudes of the
‘instantaneous’ remainder term in relation to the maximum values of larger terms,
the data with the space–time transformation appears adequate to enable comparison
of instantaneous magnitudes of different terms.

6. Shallow-water model results
The model for unsteady bores defined by the shallow-water equations with hydro-

static pressure is described in the Appendix. The measured time history of surface
elevation close to the break point, at x = 4.904 m, is input. Variation of wave height
with x (with δ = 0.5 and friction coefficient Cf = 0.01) is compared with experiment
in figure 20. A periodic state was reached after about 30 cycles. Agreement in shallow
water for bores is quite close, although just after breaking, the shallow-water equations
show a greater reduction in wave height than the experiments. Results with Cf =0
were virtually identical. With δ =0, the bore front was steeper and wave heights in
the surf zone were about 20 % higher, but this was partially due to slight over- and
undershoot at the bore face; the surface profiles away from the bore front were almost
identical. It is shown in figure 21 that r.m.s. values of fluctuating surface elevation,
η̃ − η where η is the period-averaged value, are less well predicted and the r.m.s.
values of depth-averaged velocity, shown in figure 22, are also not so well predicted.
One would not expect terms corresponding to the depth-averaged RANS terms to
be well predicted as they involve spatial and temporal gradients and will thus be
strongly influenced by the steeper fronts in the model.

7. Discussion
This study has concentrated on coherent structures in a two-dimensional vertical

plane and it appears that resolution at about the 60th harmonic of the wave frequency
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Figure 20. Variation of wave height (m) with distance x (m) from the wavemaker:
experiments (+) and the shallow-water model (full line).
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Figure 21. Variation of r.m.s. surface elevation fluctuation (m) with distance x (m) from the
wavemaker: experiments (+) and the shallow-water model (full line).

is needed. Employing the moving-average method with 120 period divisions and
averaging over 375 cycles means that the random turbulence below the 60th harmonic
is lost. The velocity spectra with roughly −5/3 (log/log) gradients to sometimes as
low as the second harmonic support this. However, the characteristics of the relatively
high-frequency residual turbulence are of interest. The horizontal and vertical normal
Reynolds stresses show quite different behaviour, particularly in the roller region,
with the vertical normal stress and the shear stress greatest at the toe of the roller.
Isotropy has not been attained in spite of the −5/3 spectral gradients (associated
with inertia-range isotropic turbulence). Such a high-frequency cut-off is different from
previous studies. In hydraulic jump studies, all unsteady motion has been interpreted
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Figure 22. Variation of r.m.s. depth-averaged velocity (m s−1) with distance x (m) from the
wavemaker: experiments (+) and the shallow-water model (full line).

as turbulence, as is indeed natural with a steady background flow. Nadaoka et al.
(1989) had a frequency cut-off at the fifth harmonic. Both cases will include coherent
structures, as measured here, as turbulence. Ting & Kirby (1996) employed ‘direct’
phase-averaging for spilling breakers and also produced spectra with gradients
very close to −5/3 with ‘turbulence’ probably also containing coherent structures.
These results suggest that a ‘clean’ definition of turbulence is not possible, at least
from single-point velocity measurements; there are no obvious spectral gaps. The
coherent vortical structures have length scales varying from greater than the water
depth to some fraction of it and turbulence, as identified by the approximate −5/3
spectral gradients, overlaps with much of this. Three-dimensional coherent structures,
such as obliquely descending vortices, are not even considered. Such overlapping
length scales between coherent structures and turbulence would make differentiation
using two probes using the approach of Trowbridge & Elgar (2001) impossible, but
differentiating between length scales of the order of the wave length (associated with
background irrotational motion) and coherent and turbulent structures combined
may be possible.

The coherent vortical structures generated during the initial stages of breaking
for weakly plunging breakers on a 1:20 slope look qualitatively similar to those of
Nadaoka et al. (1989) for spilling breakers on a horizontal bed. However, the nature
of coherent structures further up the beach are quite different. At the initiation of
breaking, the multiple vortical structures last for just over a metre shoreward of break-
ing, or for about half a period after breaking. Thereafter breakers propagate as bores;
an elongated vortical layer along the surface forms in the roller region, with some
residual vortical structures shoreward of the roller from the passage of previous bores.

Comparisons have been made with hydraulic jumps. The vorticity maxima which
occur near the toe of the roller are similar to hydraulic jump measurements (Svendsen
et al. 2000) during the initiation of breaking, but decrease markedly soon afterwards.
This is presumably due to the mixing and dissipation resulting from the periodic
passage of breakers inshore. This obviously does not occur with a hydraulic jump
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which is in effect a single stationary event, without upstream turbulence (due to
breaking). One might expect spilling breakers to be more similar to hydraulic jumps
than plunging breakers which have jet-like impacts on the water below, generating
higher vorticity than the more mixing-layer type behaviour of hydraulic jumps and
spilling breakers. The weakly plunging breakers here generated slightly higher vorticity
maxima than the hydraulic jump values as mentioned above. It is notable that the
multiple coherent vortical structures at the initiation of breaking were observed by
Yeh & Mok (1990) for hydraulic jumps and Nadaoka et al. (1989) for spilling breakers
and so are not just prominent for plunging breakers. The important point, however,
is that these modify markedly up the slope and become quite different, qualitatively
and quantitatively, from hydraulic jumps due to turbulence from previous breakers.

Ting & Kirby (1995, 1996) found that turbulence characteristics for plunging and
spilling breakers were quite different. Although multiple coherent structures occur
initially for spilling breakers, it may be conjectured that, as breakers become more
strongly plunging, the coherent structures propagate further shorewards, producing
different turbulence characteristics. However, it has been found that dependence on
plunging or spilling does not extend to the swash zone (Cowen et al. 2003). Ting &
Kirby also show that turbulence is transported shoreward by plunging breakers and
seaward by spilling breakers. This could be associated with turbulence being more
concentrated in the roller for plunging breakers with prominent shoreward motion
and being more distributed for bores, the turbulence outside the roller experiencing
seaward motion.

The various terms in the depth-integrated RANS equations show highly irregular
(but repetitive) behaviour in the surf zone as might now be expected with complex
vortical structures. The residual turbulence makes negligible contribution, and terms
due to dynamic pressure and vertical dispersion are as significant as the three terms in
the (inviscid) shallow-water equations, with the inertia term always greatest. A solution
of these equations, conserving mass and momentum, gave reasonable predictions of
wave height variation up the slope, as has been observed by many others. That the
mean surface elevation was not well predicted is to be expected as this is due to turbu-
lence and vortical structures which are complex and not represented. The (almost)
inviscid equations for momentum conservation have also been shown to give reason-
able predictions of run-up due to solitary waves by numerous authors (including
Stansby 2003 using the same code) and of overtopping of structures of relatively
steep slope (1:2) by Stansby & Feng (2004).

8. Conclusions
Kinematics of surf zone waves have been measured in detail for a particular case

with weakly plunging breakers on a 1:20 slope, with an emphasis on determining
coherent vortical structures in a vertical plane. These structures are visualized to be
of large scale, of the order of the depth, to very small scale and are shown to affect
the terms in the depth-integrated RANS equations in a complex irregular manner,
with five terms prominent. Vorticity magnitudes are greatest at the toe of the roller
and in a non-dimensional form are similar to hydraulic jump values at the initial
stages of breaking, but reduce rapidly thereafter. Period-averaged kinematics and
vorticity through the surf zone show mean shoreward motion above the trough level
and undertow below. There are prominent regions of strong vorticity at trough level
at the end of the plunging region, where multiple coherent vortices have dispersed
leaving an elongated layer of vorticity along the surface as the bore propagates.
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The Reynolds stresses of residual turbulence, which does not include all random
motion, are markedly anisotropic although of relatively high frequency. In spite of the
complexity of the flow, the inviscid shallow-water equations, which simply conserve
mass and momentum, predict the wave height variation up the slope, and indeed
have been shown elsewhere to reasonably predict overtopping of sloping sea walls.

It is expected that these conclusions are qualitatively valid for plunging and spilling
breakers, as multiple coherent vortices occur during the initiation of breaking to
a greater or lesser degree, before propagating as bores and eventually swash. The
quantitative details of this particular case should be useful for validating numerical
models of general form.

This project was funded as part of EPSRC Grant no. GR/N21741, ‘Extreme
wave overtopping and flooding at sea defences’ at UMIST in parallel with EPSRC
Grant no. GR/N22595 involving Alistair Borthwick, Alison Hunt and Paul Taylor
at the University of Oxford with whom there has been valuable interaction. The
LDA system was provided by the EPSRC equipment loan pool. The referees made
numerous helpful suggestions.

Appendix. One-dimensional shallow-water model
The conservation form of the shallow-water equations is used with variables water

surface elevation, η, and flux, hū; u is velocity and the overbar indicates depth-
averaged. In one dimension, the depth-averaged continuity and momentum equations
are given by:

∂η

∂t
+

∂(hū)

∂x
= 0, (A 1)

∂(hū)

∂t
+

∂(hū2)

∂x
= −gh

∂η

∂x
− τb

ρ
+

∂

∂x

(
(ν + νe) h

∂ū

∂x

)
, (A 2)

where is ν the kinematic molecular viscosity and νe the eddy viscosity. τb is the bed
shear stress defined by a friction coefficient Cf , such that τb/ρ = γ (hū) with γ =
1
2
Cf |hū/h2|. Following the approach in Kennedy et al. (2000), the eddy viscosity

in the horizontal diffusion term is defined by νe = δ2h(∂η/∂t) for ∂η/∂t > 0.15
√

gh,
with the magnitude linearly increased from zero for ∂η/∂t > 0.075

√
gh. For most

cases, δ = 0.5. The numerical solution method is given in Stansby (2003), also in the
Appendix of Stansby & Feng (2004).

The seaward input is defined by the measured time variation of surface elevation
at the break point. The computational domain extends seaward of this point and
outward travelling waves are absorbed using a sponge layer.
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